Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(2-Chlorobenzylidene)amino]-4,5,6,7tetrahydro-1-benzothiophene-3carbonitrile

Abdullah M. Asiri,^{a,b} Salman A. Khan^b and M. Nawaz Tahir^c*

^aThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, ^bDepartment of Chemistry, Faculty of Science, King Abduaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and ^cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 24 July 2011; accepted 9 August 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.105; data-to-parameter ratio = 14.4.

In the title compound, $C_{16}H_{13}ClN_2S$, the mean planes fitted through all non-H atoms of the heterocyclic five-membered and the benzene rings are oriented at a dihedral angle of 5.19 (7)°. In the crystal, a weak $C-H\cdots\pi$ interaction occurs, along with weak $\pi-\pi$ interactions [cenroid–centroid distance = 3.7698 (11) Å].

Related literature

For information on the use of Schiff bases in pharmaceutical chemistry, see: Lewinski *et al.* (2005). For related structures, see: Asiri *et al.* (2011*a*,*b*).

Experimental

Crystal data $C_{16}H_{13}ClN_2S$ $M_r = 300.79$ Triclinic, $P\overline{1}$

<i>a</i> =	8.3383	3 (4)
b =	8.688	5 (4)
c = 1	10.574	6 (5)

$\alpha = 85.975 \ (2)^{\circ}$	
$\beta = 80.806 \ (2)^{\circ}$	
$\gamma = 73.003 \ (2)^{\circ}$	
V = 723.00 (6) Å ³	
7 - 2	

Data collection

Bruker Kappa APEXII CCD	10003 measured reflections
diffractometer	2600 independent reflections
Absorption correction: multi-scan	2308 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.019$
$T_{\min} = 0.931, \ T_{\max} = 0.951$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	181 parameters
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
2600 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C11–C16 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5-H5A\cdots Cg^{i}$	0.97	2.87	3.744 (3)	151
Summatry and a (i)	v v 1 m			

Symmetry code: (i) -x, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia, for providing research facilities and for the financial support of this work *via* grant No. 3–045/430.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2106).

References

Asiri, A. M., Khan, S. A. & Tahir, M. N. (2011a). Acta Cryst. E67, o2162.
Asiri, A. M., Khan, S. A. & Tahir, M. N. (2011b). Acta Cryst. E67, o2254.
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Lewinski, J., Zachara, J., Justyniak, I. & Dranka, M. (2005). Coord. Chem. Rev. 249, 1185–1199.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Mo $K\alpha$ radiation $\mu = 0.40 \text{ mm}^{-1}$

 $0.40 \times 0.25 \times 0.25$ mm

T = 296 K

supplementary materials

Acta Cryst. (2011). E67, o2355 [doi:10.1107/S1600536811032302]

2-[(2-Chlorobenzylidene)amino]-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile

A. M. Asiri, S. A. Khan and M. N. Tahir

Comment

Schiff-base compounds have been used as intermediate for various reactions (Lewinski, *et al.*, 2005) and medical substrates. The title compound (I), (Fig. 1) has been prepared as a Pharmaceutical intermediate.

We have reported the crystal structure of 2-[(benzo[1,3]dioxol-5-ylmethylene)-amino]-4,5,6,7-tetrahydrobenzo[*b*]thiophene -3-carbonitrile (Asiri *et al.*, 2011*a*) and 2-[(4-Chloro-benzylidene)-amino]-4,5,6,7-tetrahydrobenzo[*b*]thiophene -3-carbonitrile (Asiri *et al.*, 2011*b*) which are related to the title compound.

In (I), the five membered ring A (C1/C2/C3/C8/S1) of 2-amino-4,5,6,7- tetrahydro-1-benzothiophene-3-carbonitrile and the group B (C10–C16/CL1) of 2-chlorobenzaldehyde are planar with r. m. s. deviation of 0.0097 and 0.0020 Å, respectively. The dihedral angle between A/B is 5.19 (7)°. A C—H^{...} π interaction between the six membered rings of 2-amino-4,5,6,7-tetrahydro-1- benzothiophene-3-carbonitrile and the 2-chlorobenzaldehyde group is present (Table 1). π – π interactions [separation: 3.7698 (11) Å] between the heterocyclic five membered and benzene rings are also present.

Experimental

A mixture of 2-chloro benzaldehyde (0.46 g, 2.4 mmol) and 2-amino-4,5,6,7-tetrahydro-benzo[b]thiophene-carbonitrile (0.32 g, 3.3 mmol) in ethanol (15 ml) was heated for 3 h. The progress of the reaction was monitored by TLC. The solid that separated from the cooled mixture was collected and recrystallized from a methanol-chloroform mixture (8:2) to give yellow needles of the title compound (I).

Yellow solid: Yield: 82%, m.p. 450 K.

Refinement

The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for all H-atoms.

Figures

Fig. 1. The title compounds with displacement ellipsoids at the 50% probability level. Hatoms are shown as small spheres of arbitrary radii.

Fig. 2. The partial packing (*PLATON*; Spek, 2009) which shows that C—H $\cdots\pi$ interactions are present. Only the H-atom involved in π -interaction is present.

2-[(2-Chlorobenzylidene)amino]-4,5,6,7-tetrahydro-1-benzothiophene- 3-carbonitrile

Z = 2

F(000) = 312 $D_{\rm x} = 1.382 {\rm Mg m}^{-3}$

 $\theta=3.0{-}25.3^\circ$ $\mu = 0.40 \text{ mm}^{-1}$ T = 296 KRod, yellow

 $0.40\times0.25\times0.25~mm$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 2308 reflections

Crystal data
C ₁₆ H ₁₃ ClN ₂ S
$M_r = 300.79$
Triclinic, PT
Hall symbol: -P 1
a = 8.3383 (4) Å
b = 8.6885 (4) Å
c = 10.5746 (5) Å
$\alpha = 85.975 \ (2)^{\circ}$
$\beta = 80.806 \ (2)^{\circ}$
$\gamma = 73.003 \ (2)^{\circ}$
$V = 723.00 (6) \text{ Å}^3$

Data collection

Bruker Kappa APEXII CCD diffractometer	2600 independent reflections
Radiation source: fine-focus sealed tube	2308 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.019$
Detector resolution: 8.20 pixels mm ⁻¹	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ω scans	$h = -9 \rightarrow 10$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$k = -10 \rightarrow 10$
$T_{\min} = 0.931, T_{\max} = 0.951$	$l = -12 \rightarrow 12$
10003 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.105$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0542P)^2 + 0.253P]$ where $P = (F_o^2 + 2F_c^2)/3$

2600 reflections	$(\Delta/\sigma)_{max} < 0.001$
181 parameters	$\Delta\rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.51410 (9)	0.59840 (7)	-0.31788 (6)	0.0866 (2)
S1	0.05883 (6)	0.76273 (6)	0.05536 (4)	0.0534 (2)
N1	0.0435 (3)	0.2524 (2)	0.3132 (2)	0.0764 (7)
N2	0.24264 (18)	0.44103 (18)	0.02432 (13)	0.0474 (5)
C1	0.1187 (2)	0.5590 (2)	0.09452 (16)	0.0444 (5)
C2	0.0275 (2)	0.53040 (19)	0.20896 (15)	0.0409 (5)
C3	-0.0859 (2)	0.67215 (19)	0.26797 (15)	0.0402 (5)
C4	-0.1898 (2)	0.6775 (2)	0.39739 (16)	0.0481 (6)
C5	-0.3072 (3)	0.8451 (2)	0.42743 (19)	0.0596 (6)
C6	-0.2276 (3)	0.9751 (2)	0.3795 (2)	0.0639 (7)
C7	-0.1776 (3)	0.9748 (2)	0.23394 (18)	0.0563 (6)
C8	-0.0812 (2)	0.8060 (2)	0.19563 (16)	0.0450 (5)
С9	0.0415 (2)	0.3740 (2)	0.26452 (17)	0.0490 (6)
C10	0.3285 (2)	0.4785 (2)	-0.07655 (17)	0.0515 (6)
C11	0.4641 (2)	0.3591 (2)	-0.15131 (16)	0.0467 (5)
C12	0.5574 (2)	0.4006 (2)	-0.26298 (18)	0.0505 (6)
C13	0.6858 (2)	0.2868 (3)	-0.33329 (18)	0.0553 (6)
C14	0.7236 (2)	0.1295 (3)	-0.29270 (19)	0.0581 (6)
C15	0.6354 (3)	0.0838 (3)	-0.1829 (2)	0.0631 (7)
C16	0.5064 (3)	0.1976 (2)	-0.11318 (19)	0.0580 (6)
H4A	-0.11493	0.64359	0.46182	0.0577*
H4B	-0.25684	0.60246	0.40122	0.0577*
H5A	-0.40913	0.86058	0.38900	0.0715*
H5B	-0.34027	0.85337	0.51947	0.0715*
H6A	-0.12747	0.96148	0.41971	0.0766*
H6B	-0.30654	1.07855	0.40410	0.0766*
H7A	-0.27819	1.01182	0.19234	0.0676*
H7B	-0.10754	1.04641	0.20812	0.0676*
H10	0.30434	0.58581	-0.10391	0.0618*
H13	0.74600	0.31718	-0.40782	0.0664*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H14	0.80998	0.05264	-0.33990	0.0697*
H15	0.66233	-0.02358	-0.15544	0.0757*
H16	0.44656	0.16560	-0.03915	0.0696*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0933 (4)	0.0609 (3)	0.0809 (4)	-0.0090 (3)	0.0284 (3)	0.0135 (3)
S1	0.0620 (3)	0.0531 (3)	0.0391 (3)	-0.0172 (2)	0.0119 (2)	-0.0022 (2)
N1	0.0988 (15)	0.0503 (10)	0.0746 (12)	-0.0181 (10)	-0.0035 (11)	0.0008 (9)
N2	0.0421 (8)	0.0579 (9)	0.0393 (8)	-0.0130 (7)	0.0043 (6)	-0.0117 (6)
C1	0.0419 (9)	0.0528 (10)	0.0373 (8)	-0.0138 (7)	0.0020 (7)	-0.0100 (7)
C2	0.0393 (8)	0.0441 (9)	0.0375 (8)	-0.0108 (7)	-0.0007 (7)	-0.0052 (7)
C3	0.0376 (8)	0.0446 (9)	0.0365 (8)	-0.0113 (7)	0.0013 (6)	-0.0051 (7)
C4	0.0494 (10)	0.0483 (10)	0.0400 (9)	-0.0107 (8)	0.0082 (7)	-0.0042 (7)
C5	0.0584 (11)	0.0571 (11)	0.0507 (11)	-0.0076 (9)	0.0146 (9)	-0.0069 (9)
C6	0.0718 (13)	0.0486 (10)	0.0587 (12)	-0.0092 (9)	0.0165 (10)	-0.0123 (9)
C7	0.0635 (12)	0.0425 (10)	0.0542 (11)	-0.0095 (8)	0.0064 (9)	-0.0009 (8)
C8	0.0466 (9)	0.0467 (9)	0.0384 (8)	-0.0130 (7)	0.0044 (7)	-0.0044 (7)
C9	0.0521 (10)	0.0460 (10)	0.0447 (9)	-0.0099 (8)	0.0009 (8)	-0.0091 (8)
C10	0.0462 (10)	0.0592 (11)	0.0445 (10)	-0.0129 (8)	0.0065 (8)	-0.0092 (8)
C11	0.0413 (9)	0.0547 (10)	0.0413 (9)	-0.0130 (8)	0.0040 (7)	-0.0077 (7)
C12	0.0461 (10)	0.0547 (10)	0.0462 (10)	-0.0130 (8)	0.0041 (8)	-0.0027 (8)
C13	0.0453 (10)	0.0701 (12)	0.0447 (10)	-0.0151 (9)	0.0099 (8)	-0.0062 (9)
C14	0.0477 (10)	0.0625 (12)	0.0548 (11)	-0.0054 (9)	0.0064 (8)	-0.0156 (9)
C15	0.0634 (12)	0.0543 (11)	0.0604 (12)	-0.0074 (9)	0.0070 (10)	-0.0042 (9)
C16	0.0578 (11)	0.0596 (12)	0.0486 (10)	-0.0146 (9)	0.0120 (9)	-0.0018 (9)

Geometric parameters (Å, °)

Cl1—C12	1.7277 (18)	C12—C13	1.381 (3)
S1—C1	1.7322 (17)	C13—C14	1.364 (3)
S1—C8	1.7243 (18)	C14—C15	1.371 (3)
N1—C9	1.139 (2)	C15—C16	1.380 (3)
N2	1.383 (2)	C4—H4A	0.9700
N2-C10	1.265 (2)	C4—H4B	0.9700
C1—C2	1.371 (2)	С5—Н5А	0.9700
C2—C3	1.428 (2)	С5—Н5В	0.9700
С2—С9	1.422 (2)	С6—Н6А	0.9700
C3—C4	1.494 (2)	С6—Н6В	0.9700
C3—C8	1.353 (2)	С7—Н7А	0.9700
C4—C5	1.521 (2)	С7—Н7В	0.9700
C5—C6	1.491 (3)	C10—H10	0.9300
C6—C7	1.529 (3)	С13—Н13	0.9300
С7—С8	1.500 (2)	C14—H14	0.9300
C10—C11	1.457 (2)	С15—Н15	0.9300
C11—C12	1.393 (3)	C16—H16	0.9300
C11—C16	1.390 (2)		

C1—S1—C8	92.06 (8)	C3—C4—H4A	109.00
C1—N2—C10	120.23 (15)	C3—C4—H4B	109.00
S1—C1—N2	126.07 (13)	С5—С4—Н4А	109.00
S1—C1—C2	109.88 (12)	C5—C4—H4B	109.00
N2—C1—C2	124.04 (15)	H4A—C4—H4B	108.00
C1—C2—C3	114.07 (14)	С4—С5—Н5А	109.00
C1—C2—C9	123.61 (15)	С4—С5—Н5В	109.00
C3—C2—C9	122.32 (15)	С6—С5—Н5А	109.00
C2—C3—C4	125.31 (14)	C6—C5—H5B	109.00
C2—C3—C8	111.71 (15)	H5A—C5—H5B	108.00
C4—C3—C8	122.86 (15)	С5—С6—Н6А	109.00
C3—C4—C5	112.01 (14)	С5—С6—Н6В	109.00
C4—C5—C6	112.83 (19)	С7—С6—Н6А	109.00
C5—C6—C7	112.49 (17)	С7—С6—Н6В	109.00
C6—C7—C8	108.21 (14)	Н6А—С6—Н6В	108.00
S1—C8—C3	112.24 (13)	С6—С7—Н7А	110.00
S1—C8—C7	122.74 (13)	С6—С7—Н7В	110.00
C3—C8—C7	124.94 (16)	С8—С7—Н7А	110.00
N1—C9—C2	175.9 (2)	С8—С7—Н7В	110.00
N2-C10-C11	122.19 (16)	H7A—C7—H7B	108.00
C10-C11-C12	122.04 (15)	N2-C10-H10	119.00
C10-C11-C16	120.95 (16)	C11—C10—H10	119.00
C12—C11—C16	117.01 (16)	С12—С13—Н13	120.00
Cl1—C12—C11	120.35 (13)	C14—C13—H13	120.00
Cl1—C12—C13	117.94 (15)	C13—C14—H14	120.00
C11—C12—C13	121.71 (17)	C15—C14—H14	120.00
C12—C13—C14	119.53 (18)	C14—C15—H15	120.00
C13—C14—C15	120.6 (2)	C16—C15—H15	120.00
C14—C15—C16	119.8 (2)	С11—С16—Н16	119.00
C11—C16—C15	121.36 (19)	С15—С16—Н16	119.00
C8—S1—C1—N2	-176.35 (16)	C4—C3—C8—C7	-0.2 (3)
C8—S1—C1—C2	2.04 (14)	C3—C4—C5—C6	-38.3 (2)
C1—S1—C8—C7	175.39 (17)	C4—C5—C6—C7	60.9 (2)
C1—S1—C8—C3	-1.37 (15)	C5—C6—C7—C8	-48.8 (3)
C10—N2—C1—C2	-175.64 (17)	C6—C7—C8—S1	-156.62 (16)
C1-N2-C10-C11	177.94 (16)	C6—C7—C8—C3	19.7 (3)
C10—N2—C1—S1	2.5 (3)	N2-C10-C11-C12	179.42 (17)
S1—C1—C2—C3	-2.3 (2)	N2-C10-C11-C16	-0.9 (3)
S1—C1—C2—C9	176.99 (14)	C10-C11-C12-Cl1	-0.3 (2)
N2—C1—C2—C3	176.19 (16)	C10-C11-C12-C13	179.96 (17)
N2—C1—C2—C9	-4.6 (3)	C16-C11-C12-Cl1	-179.97 (15)
C9—C2—C3—C8	-177.98 (16)	C16-C11-C12-C13	0.3 (3)
C9—C2—C3—C4	5.9 (3)	C10-C11-C16-C15	-179.6 (2)
C1—C2—C3—C4	-174.81 (16)	C12-C11-C16-C15	0.1 (3)
C1—C2—C3—C8	1.3 (2)	Cl1—C12—C13—C14	179.92 (15)
C2-C3-C4-C5	-175.60 (17)	C11—C12—C13—C14	-0.3 (3)
C8—C3—C4—C5	8.7 (2)	C12—C13—C14—C15	-0.1 (3)
C2—C3—C8—S1	0.3 (2)	C13—C14—C15—C16	0.5 (3)
C2—C3—C8—C7	-176.34 (18)	C14—C15—C16—C11	-0.5 (4)

C4—C3—C8—S1	176.53 (13)					
Hydrogen-bond geometry (Å, °)						
Cg is the centroid of the C11–C16 r	ing.					
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$			
C5—H5A···Cg ⁱ	0.97	2.87	3.744 (3)			
Symmetry codes: (i) $-x$, $-y+1$, $-z$.						

D—Н···*A* 151

